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A Generalization of Rayleigh's Theorem for the 
Infinite Harmonic Crystal 

L e o  van  Hemmen ~ 

Received May 31, 1977 

We show that if one replaces N masses in an infinite harmonic, perfect 
v-dimensional crystal by N~ lighter and N2 heavier ones such that N1 + 
N2 = N is finite, then one introduces at most vN~ (isolated) bound states. 
This can be considered as an extension of the results of Romerio and 
Wreszinski. 
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C o n s i d e r  the  e q u a t i o n s  o f  m o t i o n  o f  an  inf ini te  h a r m o n i c  c rys ta l  in  v d i m e n -  
s ions ,  w i th  7/v l abe l ing  the  par t ic les .  Le t  M~ be  the  mass  a t  the  site n e Zv 
a n d  let  a = 1 .... .  v; t hen  ~1) 

M,2~(n) = - Z cb~;~ xB(m) (1) 
rn,B 

where  m runs  t h r o u g h  7/v, t3 = 1,..., v, a n d  xe(m) is the  d e v i a t i o n  o f  the  m t h  
pa r t i c l e  in  the  C a r t e s i a n  f i -d i rec t ion  o f  [~v. In  (1), d9 = {r fl = 1 ..... v} 
is ca l led  the  interaction matrix.  W e  a s s u m e  

n,m n-re. n-m dp,.~ = r , dP~,e = 0 ,  I n -  m[ > No (2) 

t ha t  is, a t r a n s l a t i o n a l l y  i n v a r i an t ,  f in i te - range  i n t e r ac t i on .  F o r  an  ex tens ive  
s t u d y  o f  the  inf in i te  h a r m o n i c  c rys t a l  we refer  to  Ref .  2 (cf. a l so  Ref .  3). By a 
( c a n o n i c a l )  t r a n s f o r m a t i o n  we can  rewr i t e  (1) in  the  f o r m  

2,(n) = - ~ mzil2dg~:'~M~ ll2xa(m) (3) 
m,B 
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Upon introducing the diagonal mass matrix M, defined by ( M x . ) ( n ) =  
M,,x.(n), and putting x = (x~), we find that (3) is nothing but 

2 = -M-112OM-1/2x - - O~x (4) 

We are interested in a(qbu), the spectrum of M-lt2dPM - lt2 as an operator in 

----- ~) 12(7/v). We say x e ~ describes a bound state if x # 0 and qbux = 
1 

?,x, or, equivalently, if  x is an eigenvector with eigenvalue A. Clearly, x is 
more or less "localized." In addition, we assume dpx = 0<:~ x = 0, i.e., 
A = 0 is never an eigenvalue. By stability, ap 1> 0. 

I f  Aim = M, Vn e 7Iv, M = M]I and the spectrum of M-~O - dP0 is well 
known (Ref. 2, p. 131 and Section 3.4): I t  is absolutely continuous and 
consists of  a closed interval [0, P]. Actually, by Fourier transformation, q)0 is 
unitarily equivalent to the dynamical matrix D(k) which is defined on the 
Brillouin zone (BZ); in this case we have v acoustic modes.(~) Running waves 
with wave vector k e BZ are associated with the spectrum of dP0; evidently, 
they are not localized at all! We now perturb this pleasant situation somewhat. 

Denote by IA[ the number of  points in A _ Z'.  Let A = A1 w A2, and 
let 7/, = A1 w A 2 k.) (7/" - -  A )  be a partition of Z ~ into three disjoint regions 
with finite N = [A I = IA~[ + [A2I = Nx + N2 and such that 

Mn < M, h e a l ;  M~ > M, n e A 2  (5) 

while Mn = M for n ~ A, i.e., we replace some masses by lighter ones and 
some by heavier ones. Problem: Describe a(q).) and, more specifically, give 
the number of  eigenvalues--including their multiplicities. This is also of  
interest for ergodic theory because one can show ~2,3) that if dp. does not have 
any eigenvalue [that is, the point spectrum ap(qbu) is empty], then the system 
is not only ergodic, but also weakly mixing, or even Bernoulli when the 
singular continuous spectrum is absent. We now turn to the solution of our 
problem. 

As (M -1 - M - q )  is a finite-rank operator (or equivalently trace class 
because there is only a finite number of  masses in nature), the same holds for 
(M-1/2 _ M-112~) and thus also for 

M-1/2dpM-I~'-M-1/2dpM-1/2 = q b -  qb o (6) 

According to Ref. 4, ~o(qb ) = Cr~o(qbo). But not only does the absolutely 
continuous spectrum remain the same; the essential spectrum does not change 
either. ~,5) So we can expect only isolated eigenvalues of finite multiplicity 
outside [0, P], and accordingly we focus our attention on that part of  ~(dp~). 
One easily shows that h e ~ ( M -  l/2qbM- 1/2) is equivalent to h ~ ap(~llZM- 1 (I)1/2) 

and that the multiplicity is the same in both cases ; the second representation 
has the advantage of being linear in M-1,  and thus in the perturbation. 
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Au fond, we have to generalize "Rayleigh's theorem" (Ref. 1, Chapter 
VIII) to the case of an infinitely extended system; to do this the use of the 
Weinstein-Aronszajn (WA) determinant (4~ will be instrumental. Let S = 
T + A, where A = ~ = z  [xj)(ej[, m < +co, and define the WA determinant 
a s  

oJ(0 _= oJ(~; T, A) = det{3jg + (ej, R(0xe)} (7) 

where R(~) = ( T -  ~)-1. In our case T = O0, or the like; o~(0 is then a 
meromorphic function in Lx = C\[0, P]. Introduce, furthermore, the multi- 
plicity function 

( ~  if ~ is a zero of oJ of order k 
v(~; o~) = k if ~ is a pole of co of order k 

for other ~ ~ A 

and 

t 0 if ~ 6 a(T) 
~7(~; T) = dim P if ~ is an isolated point of a(T) 

+ co in all other cases 

where P is the projection associated with the isolated point ~ of  ~r(T). Then 
the (first) WA formula says (4) 

~(~; s )  = ~(~; T) + ~(~; o,)  (8) 

So the function ,7 gives precise information about the isolated points of the 
spectrum. 

Theorem. The number of bound states (including multiplicity) out- 
side [0, P] does not exceed vN1. 

ProoL By induction. Suppose the theorem holds for N = Nt + N2. 
We replace the mass M at x by M~; either (a) M~ < M or (b) Mx > M. 

(I) ,, = 1. The (first) WA formula (8) says, with 

T = O:'2M,~:O:f2, A = (M,7: - M - : ) P x  - tzfe)<e I (9) 

and Px as the projection on the site x, that 

,~(~; T, A) = 1 + ~(O1/2e, [O~:2M~O~:~ - ~]-~O~:2e) (10) 

Suppose, for instance, that N~ = 2; (D*/2Mff~O~:2 is self-adjoint, so oJ(0 may 
be rewritten in the form (putting @~:2e = f )  

~(g) = 1 + ~ (~ - g)-~ dltE~fll ~ + ~ ,  ~(,~ - g)-~t(e~,f)l ~ (11) 

and we now expect two poles, say in ,~ and ;~e- We find the new bound 
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(a) 

(b) 

Fig. 1. (a) o~(~) - 1 w h e n ~  > 0 ( M u + l  < M ) ;  (b) ~o(~) - 1 when /z  < 0 (M~r > M) .  

states where r = 0 and ~ > P ;  see Fig. 1. The  zeros of  co(~) are the points 
~, where the plotted [co(~) - 1] crosses the horizontal  line - 1 .  The dotted 
lines, though characteristic for the infinite system, will not  enter the picture 
before (III)  and (IV). 

Clearly, oJ(~) has three zeros w h e n / z  > 0 and only two when /~ < 0. 
Moreover ,  the order of  the zeros is o n e ;  to see this, it suffices to prove  
co'(~) r 0. When  ~ ~ o(T),  oJ(~) is analytic in a ne ighborhood of  ~ and 

eo'(~) = t z (@l/2e ,  [ r  - ~] -2dpl t2e)  (12) 

being zero implies 

LcPl/2M~ lqbl/2 - ~l-lqbl/2e = 0 ~ qbl/2e = 0 (13) 

so e = 0 and we have a contradiction.  Ergo, ~o'(~) r 0. Notice that  the 
slopes of  the curves in Fig. I are in agreement  with (12). Finally, if  there is 
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not  a pole in h2 (e.g.), (z moves  to the left in Fig. l a  but  ~3 is missing. There 
is no problem,  however,  for  in this case ~(T, A2) = + 1, while + 1 would be 
compensa ted  by v(0), h2) = - 1  if  there were a pole in h2. An  analogous 
a rgument  applies to Fig. lb.  

(II)  v = 2. No th ing  changes essentially. Only 

A = p[el)(e~[ +/~[e2)(e21 (14) 

as the interact ion matr ix  is now 2 x 2, and we add these two project ion 
opera tors  one after  the other. Also here I~(r is supposed to blow up when 

approaches  P f rom above.  Intuitively, the reason is the following. Take  
N I =  I and N2 = 0. P is the maximum of  a certain eigenvalue oJ,(k) 2 of  the 
dynamical  matr ix  D(k), say P = ~o~(ko) 2. A Taylor  expansion then gives 

,o,(g) 2 - o~,(ko) ~ = �89 - ko)~(,og)"(ko) + ... (15) 

in a ne ighborhood  of/Co when v = 1, while an analogous relation holds when 
v = 2; cf. also Ref. 2, Figs. VIL7-VII .11 .  Combin ing  (10) and  (15) gives the 
desired result. In  (IV) we shall point  out  wha t  can be said in general. 

( I I I )  v = 3. When  v = 3, however,  the reasoning a round  (15) breaks 
down and we m a y  get the dot ted line near  P and  thus no bound  states. I f  
/~ > 0 is large enough,  the dot ted line wilt cross - 1  in ~1 > P and we are 
done  again. A rough est imate for  such a / z  is 

tz(el, r  > P (16) 

(IV) v = 1, 2, or  3. As soon as the dot ted line appears  above - 1, the 
number  of  bound  states does not  increase any  more.  At  the left-hand side 
of  zero we never get a bound  state: In  case of  t~ < 0 the function [~o(~) - 1 ] 
is monotonica l ly  decreasing f rom zero to M/M, - 1 when ~ goes f rom - m  
to 0; the case tz > 0 is trivial. O f  course this last result also follows f rom 
general considerat ions (positivity). 

Let  us add  some remarks.  First, notice tha t  the order  o f  the zeros o f  
~o(~) corresponds with the multiplicity o f  the eigenvalues. Second, we re- 
covered the result tha t  any  mass  < M ( >  M )  does (does not) give a bound  
state when being placed in a perfect one-dimensional  lattice, (6,7) Third,  there 
is a quite natural  a rgument  (not a p roo f )  that  there are no bound  states inside 
[0, P ]  when v = 1 or 2. Suppose on the cont rary  that  they were there. We 
then would have, after a Four ie r  t ransformat ion  of  (I)1/2M-~(I)l/2x = hx with 
A ~ [0, P] ,  tha t  A = o~(ko) 2 while at  the same t ime 

vN 

~(k) = [A - D(k)] -~ tzj~(k)(f~, x) [a.e.] (17) 

But 

[a - D(k)] -1 = ~ [o~,(ko) 2 - ,o,(k)2]-lld, Xd,  n 
i = 1  

(18) 
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and the functions [oJ,(k0) 2 - oJi(k) 2]- i are not in L2(BZ) when v = 1 or  2, 
so we do not  expect that  ~ will be there either. Thus x ~ ,r cannot  be realized, 
prohibit ing A to be an eigenvalue. 

Finally we remark that  these techniques can be applied equally well to 
nonprimitive lattices. They enable us to strengthen considerably the results 
o f  Romer io  and Wreszinski, ~8) who used completely different (and more 
global) methods.  Let us add that  the assertions of  Ref. 8 on the spatial decay 
properties o f  the eigenvectors x satisfying M-112aPM-lJ2x = Ax with A~ 
[0, P ]  are actually much better than is stated. When  the interaction is finite 
range, the components  o f  x tend to zero exponentially, as follows f rom a 
relation like (17) (study qbM-~y = Ay with y = Ml/2x and M~ = M when 
In I is sufficiently large) combined with an analyticity argument ;  cf. Ref. 2, 
Section 3.4, and Ref. 7. 
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